Algebraicity of Harmonic Maass Forms
نویسنده
چکیده
In 1947 D. H. Lehmer conjectured that Ramanujan’s tau-function never vanishes. In the 1980s, B. Gross and D. Zagier proved a deep formula expressing the central derivative of suitable Hasse-Weil L-functions in terms of the Neron-Tate height of a Heegner point. This expository article describes recent work (with J. H. Bruinier and R. Rhoades) which reformulates both topics in terms of the algebraicity of harmonic Maass forms.
منابع مشابه
Effective Computation of Maass Cusp Forms
We study theoretical and practical aspects of high-precision computation of Maass forms. First, we compute to over 1000 decimal places the Laplacian and Hecke eigenvalues for the first few Maass forms on PSL(2,Z)\H. Second,we give an algorithm for rigorously verifying that a proposed eigenvalue together with a proposed set of Fourier coefficients indeed correspond to a true Maass cusp form. We ...
متن کاملDifferential Operators and Harmonic Weak Maass Forms
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms have transcendental coefficients, we show that those...
متن کاملDifferential Operators for Harmonic Weak Maass Forms and the Vanishing of Hecke Eigenvalues
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms are expected to have transcendental coefficients, we...
متن کاملCoefficients of Harmonic Maass Forms
Harmonic Maass forms have recently been related to many different topics in number theory: Ramanujan’s mock theta functions, Dyson’s rank generating functions, Borcherds products, and central values and derivatives of quadratic twists of modular L-functions. Motivated by these connections, we obtain exact formulas for the coefficients of harmonic Maass forms of non-positive weight, and we obtai...
متن کاملComputation of Harmonic Weak Maass Forms
Harmonic weak Maass forms of half-integral weight are the subject of many recent works. They are closely related to Ramanujan’s mock theta functions, their theta lifts give rise to Arakelov Green functions, and their coefficients are often related to central values and derivatives of Hecke L-functions. We present an algorithm to compute harmonic weak Maass forms numerically, based on the automo...
متن کامل